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The geometries of stable molecules can be accu. 
rately measured by spectroscopic and diffraction 
techniques. The geometries of transition states. on 
the other hand, cannot be measured by these meth- 
ods, so that a discussion of their structure must to  a 
certain extent be placed in the same category as  a 
discussion of the mating habits of dinosaurs. But un- 
like dinosaurs, the transition state has played a 
dominant role in our interpretation of chemical ki- 
netics for the last 40 years, and it has gradually ac- 
quired many of the familiar characteristics’ of stable 
molecules. 

This elusive transition state, the lowest potential 
energy barrier between reactants and products, has in 
fact more properties attributed to it than any other 
point in configuration space. Its structure and energy 
determine both the stereochemical outcome of the 
reaction and the reaction rate. Its location on the po- 
tential surface influences the distribution of energy 
in products,l arid its force constants account for iso- 
tope effects.2 I t  can be solvent stabilized or destabil- 
ized, it can be aromatic or a n t i a r ~ m a t i c , ~  it can be 
acidic OP basic.4 

Indeed, the transition state, as the cornerstone of 
absolute rate theory (ART), allows us to “under- 
stand” kinetic behavior in exactly the same way that 
we understand thermodynamics: from statistical me- 
chanical principles. By merely attaching asterisks to 
the appropriate symbols, ART allows us to interpret 
kinetics and thermodynamics together. In this way 
entropy, enthalpy, free energy, etc., are added to the 
list of properties of the transition state. The transi- 
tion state is also of some formal (perhaps semantic) 
significance since, without it, it becomes difficult to 
distinguish between reactants and products (at ex. 
actly what bond length does a diatomic molecule be- 
come two atoms?). 

Yet transition states cannot realiy be observed: 
reacting molecules simply do not remain near their 
transition states long enough to be accurately mea- 
~ u r e d , ~  so that our experimental picture of the tran- 
sition stale is that of a rat her broad and fuzzy region 
of configuration space. The role of A R T  critic must 
then largely fall upon the theoretician (someone with 
access to a computer and a potential energy func- 
tion) and, indeed, there has been much activity in 
this research area. Transition states for highly sym- 
metrical reactions such as the internal rotation in 
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ethane,6 umbrella inversion in ammonia,6 and some 
symmetrical S N ~  reactions7 were first calculated ab 
initic some years ago. More receatly, the increased 
availability of powerful computers has made feasible 
studies of larger, less symmetrical  system^.^ The  in- 
creasing number and accuracy of such computations 
promise to yield an increased understading of both 
the degree of validity of ART and how AKlr should 
be modified to  improve its function as a powerful 
predictive and interpretive .tool of kinetics. 

This Account reviews the curreiit status3 of the 
transition state, not so much from the point of view 
of its role in kinetics but rather from %be simpler 
perspective of what its structure, as a saddlepoint on 
the potential surface, is likely to be or not LO be. The 
particular focus of our attention will be whether or 
not transition states are highly symmetrical struc- 
tures of the sort envisioned when constmcting orbital 
correlation diagrams in application of the Woodward- 
Hoffmann rules. 

This question of transition-state symmetry is not 
only important to those interested in understanding 
the mechanisms and stereochemical outcomes of 
reactions, but it is also of immense importance to 
those interested in computing t,ransition-st atc 
geometries by searching potential-energy surfaces. 
Any prior knowledge of the possible or probable 
symmetry of a transition state and i t s  mode of de- 
composition to reactants and products can lead to 
considerable computational savings. 

I:n this Account, we will examine the problem of 
transition-state symmetry from three different points 
of view: rigorous group theoretical and geometric 
considerations, nonrigorous arguments concerning 
the force constants of transition states, and the re- 
sults of numerical computations. From each of these 
perspectives we will find it d cult to  avoid conclud- 
ing that transition states are very often not the high- 
ly symmetrical structures we would like them to  be. 
We begin by reviewing some properties of potcntial- 
energy surfaces in order to define terms 1.0 be used 
later in the discussion of symmetry 

(1) For a simple, yet striking. example of this see J. S. I’olaiiyi, A i -  
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McGrawHiIl. New York, X. Y., 1969, p 319 if .  
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Figure 1. The symmetric, orbital-symmetry-allowed ethylene and butadiene Diels-Alder reaction. The structures shown are those ob- 
tained from the MINDO/2 potential surface. 

Potential Energy 
Classical mechanics provides us with the potential 

energy function as a means of describing the configu- 
ration dependence of the forces among interacting 
bodies. Quantum mechanics is much more generous 
in that via the Born-Oppenheimer approximation 
there are many potential energy functions for inter- 
acting nuclei: one for each electronic state of the sys- 
tem. We are thus faced with many potential energy 
surfaces which can (and do) intersect one another 
during the course of a chemical reaction. For thermal 
reactions involving closed-shell singlet molecules, we 
generally only look a t  the lowest potential surface 
corresponding to a singlet electronic state. In other 
cases such as photochemical or radical or ionic reac- 
tions, surfaces may cross and/or there may not even 
be a potential-energy barrier. ART, in its present 
form, cannot generally be applied to such reactions. 

In chemistry, the important geometrical structures 
are stationary points on the potential-energy surface, 
points of zero potential-energy gradient (aE /aX ,  = 0 
for all coordinates X,). Potential-energy minima 
(equilibrium geometries) are a special kind of sta- 
tionary point in that  the potential energy curvature 
must be positive along any direction. Mathematical- 
ly, the curvature of the surface is measured by the 
force constants F,, ( =a2E/aX,dX,). The requirement 
that  the potential energy be a minimum in all direc- 
tions is equivalent to  the requirement that the eigen- 
values of the force constant matrix F all be positive. 
The transition state is another special kind of sta- 
tionary point. Here there must be one and only one 
independent direction of negative curvature. This 
means that  the force constant matrix of the transi- 
tion state must have one and only one negative ei- 
genvalue, as was pointed out by Murrell and 
Laidler.g We define the transition vector to be the ei- 
genvector of the force constant matrix that  corre- 
sponds to this negative eigenvalue. 

The transition vector has the important property 
that  the potential energy must decrease as  the atoms 
are displaced along the direction of the transition 
vector toward reactants or products. The fact that  
we distinguish between reactants and products al- 
lows us to also assign a phase (ie.,  a sign) to the 
transition vector, that is, we can say that the transi- 
tion vector points from reactants to products (or vice 
versa). The transition vector can be regarded as  a 

(9) J .  N. Murrell and K.  J. Laidler, Trans. Faraday Soc., 64, 371, (1968). 
If the force constant matrix were to have more than one negative eigenval- 
ue, then the transition state would resemble a hilltop rather than a pass 
(col). A hilltop cannot be the lowest barrier between any two points, since 
one could always cross a lower barrier by going around the hill. 

small but finite segment of a reaction path: a contin- 
uous path connecting reactant, transition state, and 
product with the transition state as the highest energy 
point on the path.1° Finally, the transition vector (in 
an appropriate coordinate system) must belong to 
one of the irreducible representations of the symme- 
try point group of the transition state.11 

The above properties of the transition vector are 
what allows us  to construct rules which govern the 
symmetry properties of the transition state.12 These 
rules can be used to  eliminate certain symmetrical 
structures as possible transition states, to show rig- 
orously that the existence of a transition state for 
one reaction can imply the existence of a lower ener- 
gy transition state for another, to determine for 
which reaction, if any, a computed symmetrical 
structure can serve as transition state, and to aid in 
computations by determining whether a simple ener- 
gy minimization search technique can be used to lo- 
cate a transtion state, or whether a more complicat- 
ed procedure, such as a gradient minimization tech- 
nique,I3 is necessary. These symmetry rules repre- 
sent a novel application of group theory and are the 
subject of the following section. 

Symmetry Rules 
Group theory is valuable in the study of transi- 

tion-state structure for the same reasons that i t  is 
useful in the study of molecular vibrations. It pro- 
vides a means of classifying geometries and normal 
vibrations, it can greatly reduce the computational 
labor of obtaining the geometries and force constants 
of transition states, and for certain reactions it even 
provides “selection rules” for the allowed structures 
of the transition states. 

In order to characterize the symmetry of a transi- 
tion state we need to consider both its symmetry 
point group and the symmetry species of its transi- 
tion vector. We expect, for example, that  the C, 
transition state in the orbital-~ymmetry-allowedl~ 4 
+ 2 Diels-Alder cycloaddition (Figure 1) will have a 
totally symmetric transition vector since the plane of 
symmetry is maintained throughout the orbital cor- 
relation diagram. On the other hand, the transition 

(10) We do not attempt to define the reaction path any more precisely 
than this since any definition in terms of potential energy alone must de- 
pend on the arbitrary choice of a coordinate system. A detailed discussion 
will be given elsewhere.ll 

(11) R. E. Stanton and J. W. McIver, tJr., to bepublished. 
(12) J. W. McIver, Jr., and R. E. Stanton, J .  Amer. Chem. Soc., 94, 8618 

(13) J. W. McIver. Jr., and A. Komornicki, J. Amer. Chem. Soc., 94, 

(14) R. B. Woodward and R. Hoffmann, Angew. Chem., Int. Ed. Engl., 

(1972). 

2625 (1972). 

8,781 (1969). 
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Figure 2. The DSh transition state for the internal rotation in ethane illustrating that the operation b h  converts reactants into products. 

vector must be antisymmetric under a reflection for 
symmetric transition states in Narcissistic reac- 
t i o n ~ ~ ~  (reactions in which the reactant is the mirror 
image of the product). These ideas can be formally 
generalized into the following rules governing the 
symmetry species of the transition vector.l1J2 (1) 
T h e  irreducible representat ion of t he  transi t ion vec- 
tor m u s t  be symmet r i c  under  s y m m e t r y  operations of 
t h e  transi t ion s ta te  u h i c h  leave reactant  or product  
unchanged.  ( 2 )  T h e  irreducible representat ion o f  t h e  
transi t ion vector m u s t  be ant i symmetr ic  under  s y m -  
m e t r y  operations of t h e  transi t ion s ta te  wh ich  con-  
vert  reactants  into products .  Finally, because of the 
requirement that  there be only one (e .g . ,  nondegen- 
erate) negative eigenvalue of the transition-state 
force constant matrix we know that (3) t h e  transi- 
t i on  vector cannot  belong to  a degenerate represen- 
ta t ion  o f  t h e  transi t ion s tate 's  po in t  group.  

The proofs of theorems 1 and 2 are based on for- 
mal group theoretical and geometrical arguments.ll 
They can be visualized, however, with the aid of di- 
agrams similar to 1. Here, the solid line represents a 

R-PL P uR 
T T 

1 

reaction path connecting a reactant, R, a transition 
state, T, and a product, P. The transition vector is 
represgnted by the arrow at  T. A symmetry opera- 
tion (0) of T which converts R into P must also con- 
vert every point on the path connecting R and T to a 
corresponding point on the product side, and must 
therefore reverse the direction of the transition vec- 
tor and hence change its sign (theorem 2). The non- 
degenerate (by theorem 3) irreducible representation 
of the transition vector will thus have a character of 
-1 for this symmetry operation. Similarly, the repre- 
sentation of the transition vector must have a char- 
acter of +I  for operations which leave reactant or 
product unchanged. By considering the effect of each 
symmetry operation of the point group of T one can 
determine, with the aid of a character table, the re- 
quired symmetry species of the transition vector. A 
computed structure which does not have a transition 
vector corresponding to this symmetry species can be 
ruled out as a transition state for the reactants and 
products considered, although it may be a transition 
state for some other reaction. 

In order to understand more clearly the nature and 
applications of these rules, let us consider the special 
case of a degenerate system of reactants and prod- 
ucts in which different symmetry operations of T 
convert a reactant into more than one distinct prod- 
uct. In cases such as this the symmetry rules rigor- 

(15)  I,. Salem. Account9 Chem Res 4 ,322  (1971). 

ously exclude T as the lowest transition state in the 
degenerate system. In a fourfold degenerate system, 
for example, let us assume that  we have found a 
symmetric stationary point T which we suspect of 
being a transition state and let us suppose that its 
force constant matrix has a single negative eigenval- 
ue with a corresponding eigenvector that is symmet- 
ric under operations which convert species X1 into 
XZ and antisymmetric under operations which con- 
vert XI into X3 and X4. According to  theorem 2, T 
can be a transition state for the reactions X1 - XB 
and X1 - X4 but not the reaction X1 - X2. This 
situation is illustrated in the reaction path diagram 
2. Since the transition vector can be regarded as fi- 

Xi x, 

n 
& 

nite in length,ll and since it is symmetric under op- 
erations which convert XI into &, the paths con- 
necting XI and T and XZ and T must meet a t  a 
point of lower energy (and different symmetry) than 
T, implying the existence of a lower barrier separa- 
tion X1 and Xz.16 We conclude that nature is not 
disposed toward having such symmetrical structures 
as the lowest transition states in degenerate reac- 
tions. 

In order to develop a simple scheme for applying 
these rules to actual examples, we recall the meaning 
of a symmetry operation as it is defined in the theory 
of molecular vibrations. Here a symmetry operation 
is neither a pure rotation (proper or improper) in 
space nor a permutation of the nuclei since neither 
definition leads to any useful information. I t  is rath- 
er the combination of a pure rotation of a molecule 
in space and a permutation of the nuclei back to the 
vicinity of their original positions. When applied to a 
symmetric molecule, it leaves the structure un- 
changed. When applied to a distorted molecule, it 
gives another distorted molecule. This is more easily 
visualized if we attach arrows to the nuclei of the 
symmetric structure and imagine sliding the nuclei 
to the heads of the arrows to get the distorted mole- 
cule. The effect of the symmetry operation is then to 
rotate the arrows while leaving the nuclei un- 
changed, This i s  illustrated in Figure 2 for the inter- 
nal rotation in ethane. Here, the "distorted" struc- 
ture, the ends of the arrows, represents staggered 
ethane, and the arrows themselves indicate a reac- 

(16) The only way in which T could be the lowest transition state in the 
system is if it were to be the transition state for all of the degenerate reac- 
tions in 2, i.e., if the  four paths were required to meet a t  T itself rather 
than at the ends of the transition vector. I t  can be shown'l that  this can 
occur only if the "negative" eigenvalue of the force constant matrix is e x -  
act ly  zero and that  there is no compelling reason why this should be true 
a t  points a t  which the first derivatives are also zero (stationary points). 



Vol. 7, 1974 A r e  Transi t ion S t a t e s  S y m m e t r i c ?  75 

tion path. As shown, the operation bh of the D3h 
transition state converts reactant into product. 

From similar diagrams i t  can be seen that  the oper- 
ations G,, and S3 also convert reactant into product, 
whereas E, Cz, C3, and C32 leave reactant un- 
changed. An examination of the D3h character table 
shows that, among the nondegenerate representa- 
tions, only the AI” species is symmetric under E, CZ, 
C3, and C32 and antisymmetric under but bh, and S3. 
Accordingly, the transition vector must belong to the 
AI” representation, just as we would expect since 
this is the symmetry species of the torsional mode. If 
we should find, upon calculation, that  the transition 
vector belongs to some other irreducible representa- 
tion, then we would know that  the Dah eclipsed 
structure is not the transition state in the internal 
rotation. In the Diels-Alder example (Figure l), the 
transition vector must be totally symmetric, since all 
of the elements of the Cs transition state are shared 
with the boat cyclohexene (theorem 1). 

As an example of a transition state in a degenerate 
system, let us consider the C4u symmetry structure 3 

H 
i 2 

3 

which has been suggested as the transition state for 
the configuration retaining reaction and which has 

3H + CHI 

‘H + CH, 
‘H + CH4 - {or 

been the subject of several computational studies.l7 
The displacement arrow in 3 represents the reactant 
IH + CH4. The results of applying the CQ,, symmetry 
operations to this arrow are as follows: c4 and b d ( X Z )  

convert IH + CHI into 4H + CH4; C4-I and b d ( y z )  

convert it into 3H + CH4; C42 and u,, (3HC4H) con- 
vert it into the configuration-inverted product 2H + 
CH4; and E and oU (IHC2H) leave it unchanged. An 
application of the symmetry rules t o  these results 
leads us to conclude that if the CcU structure is the 
transition state for the configuration-retention reac- 
tion, then its transition vector must belong to the B1 
representation since this is the only nondegenerate 
representation that is antisymmetric under C4, C4 -I, 
and the two b d ’ S  and symmetric under E and b,,. 

Moreover, we conclude that  the CdU structure cannot 
be the transition state for the configuration-inversion 
reaction since there is no irreducible representation 
of ClU which is nondegnerate and antisymmetric 
under C 4 2 .  

Finally, if the C4,, structure is the transition state 
for the configuration-retention reaction, then there 
must exist a lower energy transition state of di f ferent  
s y m m e t r y  for the inversion reaction. The reaction 
path diagram for this situation is then 2, with X1 
representing 1H + CH4; XZ, 2H + CH4, etc.; and 
with T representing the C4,, structure. Reaction 
Scheme I illustrates this diagram. Here TR repre- 
sents the C4,, transition state for the retention reac- 

(17) S. Ehrenson and M. Newton, Chem. Phys. Lett., 13, 24 (1972; K. 
Morokuma and L. Davis, J.  Amer. Chem. SOC., 94, 1661 (1972), and refer- 
ences contained therein. 

tion and the arrows in T R  indicate displacements of 
the hydrogens along the BI transition vector. The 
structures TI represent the lower energy D3h transi- 
tion states in the inversion reactions. We can regard 
T R  as being the transition state in the Berry pseudo- 
rotation of TI, in analogy to PF5 and related sys- 
tems.lS 

It is perhaps worth noting that  diagram 2 can also 
apply to  transition states with less than C4,, symmetry 
such as the CZ,, (which has no degenerate representa- 
tions) structure 3 where the labeled hydrogens lie a t  
the corners of a rectangle rather than a square. Like 
the C4,, structure, Czu can be a transition state in the 
H + CH4 system, but not the lowest energy one. 

The example above involved transition states with 
two- and fourfold axes. From some detailed consider- 
ations (e.g., by examining all of the point group 
character tables) it can be shown that  any structure 
in which rotation about an oddfold axis converts 
reactants into products cannot be a transition state 
for any of the degenerate reactions. Thus, for exam- 
ple, the equilateral triangle cannot be the transition 
state in the ozone pseudorotation 4. 

0 ---+ l70 
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Force Constants 
The symmetry rules discussed above are rigorous 

and are valid for both exact and approximate poten- 
tial surfaces. With the aid of some simplifying (and 
perhaps drastic) assumptions, we can use symmetry 
in quite a different manner to  characterize some 
transition-state geometries. Let us again consider the 
Diels-Alder reaction (Figure 1) and let us assume  
that  the only important degrees of freedom are the 
two bond lengths R1 and Rz, which correspond to the 
two new C-C bonds being formed. Specifically, we 
assume that the only significant contributions to  the 
transition vector are changes in R1 and Rz. If there is 
a barrier a t  all to the reaction, there must be one 
within the Cs symmetry. 

Suppose we have somehow found this symmetric 
barrier, that is, we have calculated a geometry that  
is stationary and its energy is a maximum with re- 
spect to the symmetric stretching of the two bonds 
being formed in accordance with theorems 1-3. The 
relevant force constants are K = d2E/dR12 = d2E/ 
dR2 and K’ = d2E/dRldRz. The eigenvalues‘of this 
2 x 2 force constant matrix are K + K’ for the sym- 

(18) See K. Mislow, Accounts Chem. Res., 3, 321 (19701, and references 
contained therein. 
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metric stretch and K - K’ for the antisymmetric 
stretch of RI and R2. By hypothesis K + K’ must be 
negative. If we now look a t  a 1000 4- 1000 cycloaddi- 
tion rather than the 4 + 2 Diels-Alder, then we can 
safely regard K’ as being zero a t  the symmetric bar- 
rier. In this case K must then be negative so that  
both eigenvalues will be negative. The structure will 
then be a maximum in two dimensions, and there- 
fore not a transition state. The true transition state 
will not be symmetric and will have a lower energy 
than the symmetric structure. If we assume that K is 
roughly independent of the distance between the two 
bonds,lY then K should also be negative for the 4 + 2 
cycloaddition. The interaction constant K’ must 
then be positive and larger in magnitude than K if K + K’ is to be negative and K - K’ positive, as is re- 
quired for the symmetric structure to  be the transi- 
tion state. 

In summary, this simple two-dimensional model of 
cycloadditions leads us to conclude that if the transi- 
tion state is symmetric, then the force constant K is 
negative, the interaction constant K is positive and 
greater in magnitude than K, and finally the proba- 
bility of the transition state being symmetric dimin- 
ishes as the distance between RI and R2 increases. 

A related analysis can be applied to sigmatropic 
shifts in which one bond is forming while the other is 
breaking, as in Scheme 11. Again, we must assume 
that changes in RI and R2 dominate the transition 
vector. Here, we require the symmetrical intermedi- 
ate structure to be such that energy is minimized 
with respect t o  symmetric degrees of freedom so that  
K + K’ is positive. There may, of course, be more 
than one such intermediate, and the arguments 
apply to all of them. (Alternatively, the only energy- 
minimized symmetric structure may correspond to 
two isolated fragments, in which case the transition 
state will be unsymmetrical.) The biallyl Cope rear- 
rangement is an example of a [3,3] sigmatropic shift 
and the ozone pseudorotation 5 is a [1,2] process. 

Scheme I1 

If we again assume that  K is independent of the 
distance between R1 and Rz, then K must be posi- 
tive, since K’ is zero for the [1000,1000] sigmatropic 
shift. The symmetric intermediate will thus be a 
minimum (a stable intermediate) unless K’ is posi- 
tive and greater in magnitude than K ,  in which case 
the symmetric structure becomes the transition 
state. Also, as we predicted for cycloadditions, the 
probability of the transition state being symmetric 
diminishes with increasing distance between RI and 
Rz. In both types of reactions, the “threshold” dis- 
tance between PE1 and Rz at which a symmetric in- 
termediate ceases to  be a transition state must be 
determined from more detailed considerations, such 

(19) This is certainly true for stable molecules where bond stretching 
force constants are remarkably transferable. Although it also seems rea- 
sonable for transition states, the validity of this assumption is by no means 
proven. 

as by numerical computation of these geometries and 
force constants. It should be noted that this type of 
analysis can be extended to any symmetrically equiv- 
alent coordinates involved in the transition vector, 
not just bond lengths. 

Computational Results 
At present, it appears that the detailed geometries 

of transition states can best be examined by comput- 
ing these structures on approximate potential energy 
surfaces. Some results of relatively accurate ab in,itio 
calculations were mentioned in the introduction. Be- 
cause of their computational expense, however, such 
calculations are generally limited to rather small sys- 
tems. For this reason there has been a great deal of 
activity in the area of developing and applying semi- 
empirical molecular orbital methods.20 In the study 
of potential surfaces, where it is desirable to have 
both the energy and its gradient, the semiempirical 
methods are an order of magnitude less expen.. 
sive than even a modest ab  initio calculation. Inter- 
preted cautiously, the results of semiempirical calcu- 
lations can provide us with valuable information 
concerning the nature of chemical reactivity. Below 
we list some of the more interesting results obtained 
by semiempirical molecular orbital calculations for 
cycloaddition reactions and the Cope rearrangement. 

Cycloadditions. MINDQ/221 calculations of the 
symmetric barriers for the addition of methylene to 
ethylene (to form cyclopropane), the dimerization of 
ethylene (both the forbidden and allowed processes), 
and the ethylene plus butadiene Diels-Alder reaction 
give, in each case, a force constant matrix with more 
than one negative eigenvalue and therefore suggest 
that the transition state for each reaction is unsym- 
metrical.22 Commensurate with this result, Iloff- 
mann and coworkers, using the extended Huckel 
method,23 and Dewar and coworkers24 using 
MINDQ/2 (which was developed in Dewar’s labora- 
tory), report that there is no potential barrier for the 
unsymmetrical addition of methylene to ethylene. 

An interesting feature of the MI?JDQ/2 results for 
the dimerization of ethylene is that, although neither 
symmetric structure is a transition state, the 2, -k 2,  
orbital-symmetry-forbidden structure is slightly 
lower in energy than the allowed 2, + 2 ,  structure, 
suggesting that steric or other effects overshadow the 
effects of orbital-symmetry conservation. Although 
the correct transition state on the MINDO/2 surface 
has not yet been located, Hoffmann and coworkers, 
in an extended Huckel study of the tetramethylene 
diradical, suggest that  the diradical “intermediate” 
in the dimerization of ethylene is in fact a transition 
state (a barrier) located on a very flat part of the po- 
tential surface (a  “twixtl”) the flatness of the surface 
accounting for the loss of stereospecificity.25 

(20) For a review of some of these methods, see H.  H. JaffB, Accounts 

(21) M. J. S. Dewar and E .  Haselhach, J.  Amer. Chem. Soo ,  92, 590 

(22) J. W. McIver, Jr . ,  J .  Amer. Chem. Soc., 94, 4782 (1972). 
(23) R. C. Dobson, D. M. Hayes, and R. Hoffmann, J .  Amer. Chem. 

(24) K. Bodor, M. J. S. Dewar, and ,J. S. Wasson, J.  Amer. Chem. Soc., 
94,9095 (1972). 

(25) R. Hoffmann, S. Swaminathan, B. G.’Odell, and R. Gleiter, J.  
Amer.  Chem. Soc.. 92. 7091 (1970). This may he an even more eeneral 

Chem. Res. ,  2, 136 (19691, and J. A. Pople, ibid., 3, 217 (1970). 

(1970). 

Soc., 93,6188 (1971). 

property of diradicals. See L. Salem and C.  Rowland. Angtw Chem., Int. 
Ed. Engl., 11,92 (1972). 
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Cope Rearrangement. Dewar and coworkers have 
calculated the structure of the symmetric intermedi- 
ates in the biallyl Cope rearrangement26 and also in 
some semibulvalene Cope  rearrangement^,^^ the cal- 
culated energies of the latter agreeing remarkably 
well with experimental activation energies. In the 
biallyl rearrangement, it was found that  the “chair” 
form of the intermediate was more stable than the 
“boat” form, in agreement with the classic Doering 
and Roth experiment.28 Additional MIND0/2 calcu- 
lations of the biallyl rearrangement reveal that both 
the chair and boat symmetric structures actually are 
shallow minima and the two transition states are 
nonsymmetrical structures lying between the inter- 
mediates and bially1.29 All of these results are in 
complete accord with the symmetry arguments of 
the preceding section since we would expect a small 
interaction force constant between the two partially 
broken bonds in these systems. 

Conclusions 
On the basis of these calculations (and the preced- 

ing symmetry arguments), it would appear that Na- 
ture is not being cooperative in giving us nicely sym- 
metrical transition states. Perhaps we should not be 
too surprised, though, since there is no a priori rea- 
son why they should be symmetric. We impose sym- 

(26) A. Brown, M.  J. S .  Dewar, and W. Schoeller, J.  Amer. Chem. Soc., 

(27) M.  J. S. Dewar and W.  Schoeller, J. Amer. Chem. S O C ,  93, 1481 

(28) W. V .  Doering and W. R.  Roth, Tetrahedron, 18, 67 (1962). See also 

(29) A. Komornicki and J. W. McIver, Jr., to  be published. 

92,5516 (1970). 

(1971). 

M. J. Goldstein and M .  S. Benzon, J. Amer. Chem. Soc., 94,7147 (1972). 

metry on a transition state for reasons of simplicity. 
Thus, the symmetric intermediate structure in a 
Woodward-Hoffmann correlation diagram need not 
be the actual transition state, just as the “reactant” 
and “product” symmetric structures need not be the 
actual equilibrium geometries of these species. In the 
Woodward-Hoffmann “allowed” Diels-Alder reac- 
tion, for example (Figure l), the correlation diagram 
requires that a plane of symmetry be maintained 
throughout the reaction. Yet, this is an example in 
which neither the reactant nor the product possesses 
this symmetry plane,30 so why should the transition 
state? If it should turn out that the correct transition 
states are nearly symmetrical, then of course there 
would be little effect on predicted rates or stereo- 
chemistry. This can be settled however, only by 
more extensive calculations, calculations that are 
currently under way in several research groups. 

M a n y  of the ideas reported here are the  result of a collaborative 
effort. I n  particular, the  symmetry rules were worked out  jointly 
wi th  Professor R. E. S tanton  and m u c h  of the  remaining discussion 
resulted from conversations with and encouragement by  Professor 
Harry F. King. T h e  M I N D 0  calculations were done with a n  able 
graduate s tudent ,  Andrew Komornicki, and Professor C. D. Ritchie 
critically read the  manuscript and made many  helpful sugges- 
tions. I a m  grateful to  them all. I also wish to thank the  donors of 
the  Petroleum Research Fund, administered by  the  American 
Chemical Society, for financial support and the  Computing Cen- 
ter of the  S ta te  University of New York a t  Buffalo for generous 
allotments of computer t ime.  

(30) cis-Butadiene appears to be skewed (B. .Dumbacher, Theor. Chim. 
Acta, 23, 346 (1972)), and boat cyclohexene is a barrier to the half-chair in- 
version (F. Anet and M .  Hag, J. Amer. Chem. Soc., 87, 3647 (1965); N. L. 
Allinger and J. T. Sprange, J.  Amer. Chem. SOC., 94,5734 (1972)). 
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The growing interest in recent years in organosili- 
con chemistry, made despite the gloomy predictions 
of F. S. Kipping in 1936 that “the prospects of any 
immediate and important advance in this section of 
organic chemistry do not seem to be very hopefu1,”l 
has been catalyzed both by the commercial develop- 
ment of the silicones and, more recently, by the in- 
terest of chemists in introducing new and exotic het- 
ero atoms into molecules for a wide variety of rea- 
sons. 

Adrian Brook received his B.A. and Ph.D. degrees at the University of 
Toronto, the latter in the area of oxymercuration. After a year as lecturer 
at the University of Saskatchewan, he went as a Nuffield Fellow to Impe- 
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ronto, where he is currently Professor and Chairman. H e  was awarded 
the ACS Frederick Stanley Kipping Award in Organosilicon Chemistry in 
1973. This article is based on the award lecture. 

The interests in our laboratory have focused on or- 
ganosilicon compounds which have functional groups 
(OH, C=O, S-0, C=N etc.) attached to  carbon 
adjacent to silicon, where the interactions of these 
groups with the silicon atom may lead to, or facili- 
tate, a variety of molecular rearrangements. Most of 
the rearrangements described below are restricted to 
cases studied in the author’s laboratory which in- 
volve interactions between silicon and oxygen: these 
constitute only a small part of a growing literature 
on molecular rearrangements of organosilicon com- 
pounds. 

In the 1950’s Gilman and coworkers2-4 found that 

(1) F. S. Kipping, Proc. Roy. SOC. Ser. A,  159, 139 (1937). 
(2) H. Gilman and T. C. Wu, J. Amer. Chem. Soc., 75,2935 (1953). 
(3) H. Gilman and T. C. Wu, J. Amer. Chem. SOC., 76,2502 (1954). 
(4) H. Gilman and G. D. Lichtenwalter, J.  Amer. Chem. SOC., 80, 2680 

( 1958). 


